Inventory of insects associated with shea trees (*Vitellaria paradoxa*) (Sapotaceae) in central and northern Benin

Kouami N'Djolossè¹*, Pierre Atachi² and Césaire Paul Gnanglè¹

¹Institut National des Recherches Agricoles du Bénin (INRAB), BP 112 Savè, Benin; ²Faculté des Sciences Agronomiques (FSA), Université d'Abomey-Calavi (UAC), 01 BP 526 Cotonou, Benin

(Accepted 31 July 2012)

Abstract. Shea parklands have a great socio-economic, cultural and ecological interest but suffer pest attack, which is among the major causes for their deterioration in Africa. To establish an inventory of insects associated with shea trees, the foliage, stems and fruits were regularly examined on 180 trees randomly chosen at six sites in the central and northern regions of Benin. From June to October 2010, a total of 196 samples containing 1415 specimens were collected. These insects belong to 8 orders, 36 families and 56 genera. Forty-seven insects were identified to the species level. The defoliator *Cirina forda* (Westwood) and the stemborer *Neoplocaedaerus* spp. were the two most damaging insect species occurring on shea trees. This study stresses the need to protect the shea parklands in Benin through the implementation of integrated insect pest management strategies against shea tree pests.

Key words: shea parklands, Cirina forda, Neoplocaedaerus spp., shea tree pests, Benin

Introduction

The shea tree (Vitellaria paradoxa C.F. Gaertner) (Sapotaceae), better known by its former name, Butyrospermum parkii (G. Don) Kotschy, is a wild species generally protected and preserved in West Sudanian Africa and in the Sahel. It has a great socioeconomic, cultural and ecological significance due to its numerous local uses. Most importantly, shea trees produce fruits that can be transformed into a high-value export product, namely shea butter. It is used in cosmetology (raw material for many skin and hair treatment products), in pharmacology (excipient for ointments used to treat dermatosis, burns, cracks, etc.) and as a substitute for cocoa butter in recipes (Sallé et al., 1991). The development of shea tree cultivation as an economic and nutritional resource began in West Africa in the 1950s and its importance has increased considerably

during the last decade (Masters, 2004). In spite of the wide range of shea products, trees remained until very recently, naturally grown, principally because of their excessively long pre-fruiting period (usually 17–20 years, and in extreme cases up to 30 years), and their rather irregular year-to-year productivity (Agbahungba and Depommier, 1989; Sallé *et al.*, 1991). However, because of the growing socioeconomic significance of shea products and the ageing of existing tree stands, commercial plantations are on the rise spurred by the development of vegetative propagation techniques, mainly by grafting (Masters, 2004; Sanou *et al.*, 2004).

Nowadays, shea tree use is one of the promising agricultural sub-sectors whose development has become a priority for several countries in West Africa, particularly for Benin. Biotic stress, however, consitutes one of the reasons for the presently observed decline of shea tree productivity (Sallé *et al.*, 1991). Records from Burkina Faso, Ghana, Mali, Nigeria and Togo indicate that trees can be affected by

^{*}E-mail: kndjolosse@yahoo.fr

several insect species (Sallé *et al.*, 1991; Dwomoh, 2003, 2004; Odebiyi *et al.*, 2004; Lamien *et al.*, 2008). Related information for Benin is still scanty or limited to single pest species (Gnanglè, 2005; Douro Kpindou and Djègui, personal communication). As a pre-requisite for the development of integrated management strategies against the most damaging species, the present study provides a detailed inventory of insects associated with shea trees in central and northern Benin.

Materials and methods

Study sites

The study was carried out from June to October 2010 at six sites – in the districts of Savè, Tchaourou and Bembèrèkè (Fig. 1) – all situated within the five shea parklands of Benin as identified by Gnanglè (2005). Additional site information is provided in Table 1.

Shea tree selection

In each of the six villages chosen, an area of 5–7ha containing about 125–150 shea trees of 8–12 m height was delimited and all fruit-producing trees therein were individually numbered with paint. Of these trees, 30 were randomly selected using a random number table. Thus, over the six villages, a total of 180 trees were surveyed to collect data on fruits, foliage and stems.

Insect collection

Fruit insects

In June 2010, i.e. during the fructification period, 50 fruits, half of them mature, were collected from each of the 30 selected trees. All insects found on or within the subsequently dissected fruits were counted by species, preserved in small glass vials containing 55% ethanol and labelled with their concomitant data.

Foliage insects

Samples were collected on three occasions at 6-week intervals from July to October 2010 using PACHA 25 EC, a broad-spectrum pyrethrinoid insecticide (PACHA 25EC: acetamipride 10 g/l and lambda-cyhalothrin 15 g/l, Savana, France) at a concentration of 5 ml/l and at a dose of 2 litres/tree. At 20-30 min after application using the knock-down insecticide with a mechanized knapsack sprayer, trees or branches were shaken and all insects that fell on a material sheet of $10 \times 10 \text{ m}$ size previously spread under the trees were collected, and sorted under a binocular microscope. They were preserved

by species in vials filled with 55% alcohol. Lepidopteran samples were conserved in paper envelopes.

Twig and stemborers

At each site, two trees showing severe stemborer infestation were felled. Attacked trunks and twigs were cut into pieces of 80 cm size and brought back to the laboratory and maintained at an ambient temperature of 28° C until the emergence of adult insects, which were subsequently sorted and handled as above.

Insect identification

All insect specimens were cross-checked and reference samples submitted for determination at the Biosystematics Unit of the International Institute of Tropical Agriculture (IITA), Cotonou, Benin, where voucher specimens were stage-mounted and retained in the arthropod reference collection.

Results

Relative importance of insect fauna collected on shea trees

From June to October 2010, regular collections on 180 randomly chosen shea nut trees at six sites in central and northern Benin led to the collection of a total of 196 samples and 1415 specimens representing at least 61 insect species distributed in 8 orders, 36 families and 56 genera. Figure 2 shows the relative importance of each insect order. It appeared that insect orders such as Coleoptera, Heteroptera, Homoptera, Lepidoptera and Orthoptera that contained pest species were the most important according to genera diversity. However, some orders such as Hymenoptera, Dictyoptera and Diptera (Syrphidae) that generally contain predators or parasitoids were also encountered.

Shea tree foliage-inhabiting insects

The 996 insect specimens collected from shea tree foliage belonged to 8 orders, 29 families, 45 genera and at least 47 species. Twenty-nine insects were identified to the species level. Table 2 shows the relative importance of foliage insects at each sampling period. This table also presents the list of the inventoried insects in shea tree foliage in Benin, the localities in which they were inventoried and the periods (month) of their census.

Shea fruit insects

The 376 insect specimens collected on or within shea fruits belonged to 3 orders, 6 families, 10 genera and at least 11 species. Seven insects were identified to

Fig. 1. Survey sites in Benin (a colour version of this figure can be found online at http://www.journals.cambridge.org/jti).

the species level. The Coleoptera order was the most important, with four families and seven genera. The majority of fruit insects (nine species) were collected in the pulps of fallen decomposing fruits. Two species feed on mature almonds that fall to the floor. Only one species of cochineal was recovered on the epidermis of immature shea fruits on the tree. Table 3 provides information related to all the species.

Shea twig and stemborers

The 41 insect specimens collected on shea twigs and stems belonged to only one order, two families, two

Characteristics	Bembèr	èkè district	Savè c	district	Tchaourou district			
Villages Geographic co-ordinates	Ina 09°58′08N 02°44′42E	Kéroukpogoh 10°06′55N 02°39′01E	Ouoghi 08°06′16N 02°33′00E	Gogoro 08°16′36N 02°36′44E	Tchaourou Centre 08°51′29N 02°36′19E	Bassè Kparou 09°02′26N 02°34′12E		
Rainfall	of 1000 mr over a rain	annual rainfall n distributed y season from o October	rainfall of distributed rainy seas mid-Marc June and	ge annual f 1150 mm d over two sons from ch to mid- August to ember	An average annual rainfall of 1150 mm distributed over two rainy seasons from mid-March to mid-June and August to November			
Main soils	Main soils Tropical ferruginous			erruginous	Tropical ferruginous			
Main crops	Cotton, maize, sorghum, yam, livestock products			naize, cas- , yam	Cotton, maize, peanuts, yam			
Plantations					Cashew, teak			
Natural agroforestry trees	orestry trees Shea, locust bean			cust bean	Shea, locust bean			
Fallow periods			5-10	years	5-10 years			
Dominant ethnic groups	Nago, Mah migrants (F	i and	Nago, Bariba and migrants (Fon, Wama)					

Table 1. Study area characteristics*

*Sources: Gnanglè (2005) and authors' own data (2010).

genera and three species: *Sphenoptera laplumei* Kerremans (Coleoptera: Buprestidae), a shea branch insect and the stemborers *Neoplocaedaerus denticornis* (Fabricius) and *N. iridescens* (Atkinson) (both Coleoptera: Cerambycidae).

Discussion

A good knowledge of shea insects is the first step in the development of integrated management strategies against the most damaging insect pests. The results of the present survey show that in Benin, 56 genera of

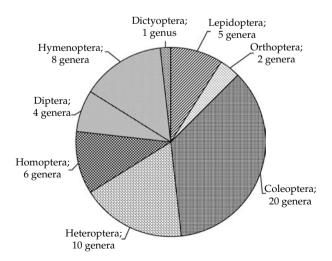


Fig. 2. Relative importance of insect orders associated with shea trees in Benin

shea insects were identified while 53 and 33 genera were identified by Dwomoh (2003) and Odebiyi *et al.* (2004), respectively, in Ghana and Nigeria. Insects of the mantid family in this survey were classified in the Dictyoptera order, whereas Dwomoh (2003) and Odebiyi *et al.* (2004) classified them in the Hymenoptera and Orthoptera orders, respectively. The results of this survey also show the existence of a second genus of shea stemborers in Benin (*Neoplocaedaerus*) in addition to the *Pachydissus* genus discovered by Douro Kpindou and Djègui (personal communication) during their study. The discovery of a second shea stemborer genus explains the extent of stemborer-related damage in the parkland.

Among foliage insects, some were present throughout the survey period (mid-July to mid-October 2010). These are Oecophylla longinoda, Tanymecus sp., Rhinia sp., Sphodromantis sp. and Mantis sp. Others were present in all the three districts (Savè, Tchaourou and Bembèrèkè). These are Himatismus senegalensis Haag-Rutenberg (Coleoptera: Tenebrionidae), Xerophyllum platycorys (Westwood) (Orthoptera: Tetrigidae), Tanymecus sp. (Coleoptera: Curculionidae), Rhinia sp. (Diptera: Calliphoridae), O. longinoda (Latreille), Camponotus sp. (both Hymenoptera: Formicidae), Sphodromantis sp., Mantis sp. (both Dictyoptera: Mantidae) and Cirina forda Westwood (Lepidoptera: Saturniidae). As for the shea stemborers, they were present in all the three districts and their larvae and damage were visible throughout the survey period.

The defoliator *C. forda* and the stemborer *Neoplocaedaerus* spp. are pest species that have

			Nu	mber of co specimens				
Order	Family	Species	Mid- July	End- August	Mid- October	Localities	Periods	
Coleoptera	Alleculidae	Alogista serricorne Kolbe	18	12	0	Ouoghi, Bassè Kparou and Kéroukpogoh	July and August	
Î.	Bruchidae	<i>Caryedon</i> sp.	6	0	0	Bassè Kparou	July	
	Cantharidae	Ichthyurus sp.	68	0	0	Ouoghi, Gogoro, Bassè Kparou, Ina and Tchaourou Centre	July	
	Chrysomelidae	<i>Monolepta</i> sp.	12	0	0	Bassè Kparou	July	
		Syagrus sp.	38	10	0	Ouoghi, Gogoro, Bassè Kparou, Ina and Tchaourou Centre	July and August	
	Curculionidae	Proictes curvipes Hustache	8	0	0	Tchaourou Centre and Kéroukpogoh	July	
	Tanymecus sp.		66	56	8	Ouoghi, Bassè Kparou, Ina, Tchaourou Centre and Kéroukpogoh	July to October	
	Elateridae	Aeoloderma sp.	18	0	0	Bassè Kparou and Tchaourou Centre	July	
	Staphylinidae	Paederus sabaeus Erichson	0	0	16	Ouoghi	October	
	Tenebrionidae	<i>Himatismus senegalensis</i> Haag-Rutenberg	50	0	0	Ouoghi, Bassè Kparou and Ina	July	
		Paramarygmus femoralis Imhoff	4	0	0	Bassè Kparou	July	
Dictyoptera	a Mantidae	Mantis sp.	8	8	6	Ouoghi, Gogoro, Bassè Kparou, Tchaourou Centre, Ina and Kéroukpogoh	July to October	
		Sphodromantis sp.	6	10	10	Ouoghi, Gogoro, Bassè Kparou, Tchaourou Centre, Ina and Kéroukpogoh	July to October	
Diptera	Calliphoridae	Rhinia sp.	52	24	8	Ouoghi, Bassè Kparou, Ina, Tchaourou Centre and Kéroukpogoh	July to October	
	Syrphidae	<i>Ischiodon aegyptius</i> Wiedemann	0	6	0	Ina and Kéroukpogoh	August	
	Tephritidae	Ceratitis cosyra (Walker)	0	4	0	Gogoro and Kéroukpogoh	August	
	1	Leucotaeniella guttipennis Bezzi	0	2	0	Kéroukpogoh	August	
Heteroptera	a Coreidae	Cletus sp.	4	0	0	Tchaourou Centre	July	
Ĩ		Pseudotheraptus devastans Distant	2	0	0	Bassè Kparou and Tchaourou Centre	July	
	Lygaeidae	Dieuches sp.	32	0	0	Bassè Kparou, Ina and Tchaourou Centre	July	
	Pentatomidae	Acrosternum miliaris (Klug)	0	4	0	Kéroukpogoh	August	
		Amaxosana punctata Distant	4	2	0	Tchaourou Centre	July and August	
		Macrina juvenca Burmeister	0	2	0	Kéroukpogoh	August	

Table 2. Continued

			Nu	mber of co specimens				
Order	Family	Species	Mid- July	End- August	Mid- October	Localities	Periods	
		<i>Myrochea aculeata</i> (West-wood)	6	0	0	Gogoro	July	
	Pyrrhocoridae	Dysdercus voelkeri Schmidt	6	0	0	Bassè Kparou and Ina	July	
	Reduviidae	<i>Lisarda vandenplasi</i> Schouteden	4	0	0	Ouoghi	July	
		Pephricus pellucida (Westwood)	4	2	0	Bassè Kparou	July and August	
Homoptera	Cicadellidae	Batracomorphus sp.	10	8	0	Bassè Kparou and Tchaourou Centre	July and August	
-		Cicadella nigrifrons Distant	2	0	0	Bassè Kparou	July	
		<i>Coelidia</i> sp.	12	0	0	Tchaourou Centre and Ina	July	
	Fulgoridae	Zanna tenebrosus Fabricius	4	0	0	Tchaourou Centre	July	
	Ricaniidae	<i>Ricania quinquifasciata</i> Stål	0	0	6	Kéroukpogoh	October	
Hymenop- tera	Anthophoridae	Amegilla acraensis (Fabri- cius)	2	4	0	Tchaourou Centre and Ina	July and August	
	Braconidae	<i>Bracon</i> sp.	8	0	0	Bassè Kparou and Tchaourou Centre	July	
	Formicidae	<i>Camponotus sericeus</i> (Fabricius)	6	4	0	Ouoghi, Gogoro and Tchaourou Centre	July and August	
		Camponotus sp.	34	6	0	Ouoghi, Bassè Kparou and Tchaourou Centre	July and August	
		Crematogaster sp.	6	0	0	Gogoro	July	
		<i>Oecophylla longinoda</i> (Latreille)	50	34	14	Ouoghi, Gogoro, Bassè Kparou, Tchaourou Centre, Ina and Kéroukpogoh	July to October	
		Pheidole sp.	114	22	0	Ouoghi and Kéroukpogoh	July and August	
	Sphecidae	Sphex sp.	4	0	0	Ouoghi and Gogoro	July	
Lepidoptera	Ctenuchidae	<i>Thyretes negus</i> Oberthür	0	2	0	Tchaourou Centre	August (adults)	
	Noctuidae	Achaea catocaloides Guenée	0	2	0	Tchaourou Centre	August (adults)	
	Pieridae	Eurema desjardinsii regularis Butler	0	2	0	Bassè Kparou	August (adults)	
	Saturniidae	Cirina forda Westwood	0	10	0	Gogoro, Kéroukpogoh and Tchaourou Centre	June (larvae) and August (adults)	
		Gonimbrasia hecate Rougeot	0	2	0	Kéroukpogoh	August (adults)	
Orthoptera	Tetrigidae	<i>Xerophyllum platycorys</i> (Westwood)	14	0	0	Ouoghi, Bassè Kparou, Ina, Tchaourou Centre and Kéroukpogoh	July	
	Tettigoniidae	Habrocomes sp.	0	8	0	Gogoro, Bassè Kparou and Tchaourou Centre	August	

e	Bembèrèkè	Bassè Kparou Ina Kéroukpogoh	0	0	11	0	12	0	0	0	0	28	8	15
ver sit		Ina	0	0	0	0	9	0	0	0	0	0	0	0
Number of collected specimens per site	Tchaourou	Bassè Kparou	0	0	7	6	13	17	68	9	0	0	0	0
ber of collee	Tch	Tchaourou Centre	0	വ	8	0	24	0	0	0	20	0	0	0
Num	è	Ouoghi Gogoro	13	4	15	0	18	8	48	0	0	0	0	0
	Savè	Ouoghi	0	0	0	0	7	0	9	0	0	0	0	0
		Fruit part attacked	Pulp	Pulp	Pulp	Mature almond	Pulp	Mature almond	Pulp	Pulp	Immature fruit epidermis	Pulp	Pulp	Pulp
		Species	Neosiopelus sp.	Hister tropicalis Marseul	Epitoxus circulifrons (Marseul)	Epuraea sp.	Phenolia (Lasiodites) sp.		Urophorus niditus Murray	Scarabaeidae Onthophagus sp.	<i>Udinia catori</i> (Ĝreen)	Crematogaster censor Forel	Crematogaster kneri Mayr	Myrmicaria fumata Santschi
		Family	Carabidae	Histeridae		Nitidulidae				Scarabaeidae	Coccidae	Formicidae		
		Order	Coleoptera	I							Homoptera	Hymenoptera	1	

already been identified on shea trees. Odebiyi *et al.* (2004) and Dwomoh *et al.* (2004) have started research on control methods against *C. forda.* In contrast, no published data are available on the control of shea stemborers. Future research on the main insect pests will need to establish integrated management methods to safeguard shea parklands. Control methods developed for cerambycid stemborers on some tree species in northern Africa, Asia and Europe can possibly be applied to control shea stemborers. These are:

- (a) biological control with natural enemies, entomopathogen agents such as *Beauveria bassiana* and nematodes (Taketsune, 1983; El-Sebay, 1984; Luo, 1997; Sone *et al.*, 2007);
- (b) chemical control with ovicide and larvicide insecticides such as Endosulfan and Diazinon spray against adults (Hashemi Rad *et al.*, 2005; López Pantoja *et al.*, 2008). The adults of beetles are very sensitive to insecticides and can be controlled at the field level if insecticide spray is managed correctly and at the right time (peak time when adults appear) (Hashemi Rad *et al.*, 2005).

However, the use of systemic insecticides to kill the stemborer larvae in shea trees should be considered only when all the other control options fail. This would avoid the problems of pesticide residues in the almonds and shea butter.

The method used for collection of foliage insects presents the following limitations:

- (a) the insects that are found on the lower leaf surface (aphids and cochineals) cannot be detected;
- (b) temporary insects that are not associated with the shea tree can be trapped.

In spite of these few limitations, our results were comparable to those obtained by Odebiyi *et al.* (2004) who used circular nets and vacuum cleaners. The fewer number of genera recorded by these authors can be explained by the fact that they were concerned only with the insect pest species.

Acknowledgements

The authors would like to express their gratitude to RIPIECSA, IRD and INRAB for their financial support. We are also pleased to thank all the Readers for their technical assistance, mainly Dr Fatondji Dougbédji, Mr Benjamin Datinon, Dr Kobi Douro Kpindou and Mr Siaka Kodjo. We are particularly grateful to Dr Georg Goergen for his contribution to insect species identification and manuscript reading. Many thanks also go to reviewers of this manuscript for their technical assistance.

 Table 3. Inventoried insects on shea fruits

References

- Agbahungba G. and Depommier D. (1989) Aspects du parc à karités-nérés (Vitellaria paradoxa Gaertn. F. et Parkia biglobosa Jacq. Benth.) dans le Sud du Borgou (Bénin). Revue Bois et Forêts des Tropiques 222, 41–54.
- Dwomoh A. E. (2003) Insect species associated with sheanut tree (*Vitellaria paradoxa*) in Northern Ghana. *Tropical Science* 43, 70–75.
- Dwomoh A. E. (2004) Damage by the fruit borer *Nephopterix* sp. and other factors in Shea nut tree, and their distribution in northern Ghana. *Tropical Science* 44, 31–34.
- Dwomoh A. E., Akrofi A. Y. and Ahadzi S. K. (2004) Natural enemies of the shea defoliator, *Cirina forda*. *Tropical Science* 44, 124–127.
- El-Sebay Y. M. A. (1984) Biological, ecological and control studies on the wood-borers, *Bostrychopsis reichei* Mars, *Dinoderus bifoveolatus* Woll. (Bostrychidae) and *Macrotoma palmata* F. (Cerambycidae). PhD thesis, Faculty of Agriculture, Azhar University, Egypt. 263 pp.
- Gnanglè P. C. (2005) Parcs à karité au Bénin: importance socio-culturelle; caractérisation morphologique et structurale; régénération naturelle. Mémoire de DEA en Aménagement et Gestion des Ressources Naturelles. Faculté des Sciences Agronomiques. Université d'Abomey-Calavi. 132 pp.
- Hashemi Rad H., Morovati M., Bahreyney H., Rajabi A. and Zeydabadi R. (2005) Study of some insecticide effects on the long-horned beetle *Calchaenesthes pistacivora*. Technical Report No. 24,496, Pistachio Research Institute (PRI), Rafsanjan, Iran. 16 pp.
- Lamien N., Tigabu M., Dabiré R., Guinko S. and Oden P. C. (2008) Insect (*Salebria* sp.) infestation and impact on *Vitellaria paradoxa* C.F. Gaertn. fruit production in agroforestry parklands. *Agroforestry Systems* 72, 15–22.

- López Pantoja G., Domínguez L. and Sánchez Osorio I. (2008) Wood-boring insects, repercussion on decay processes. *Europa Cork* 38, 40–45.
- Luo Q. (1997) Study on biological control of litchiparastem borer (Metarbelidae) and longicorn beetle (Cerambycidae) by nematodes. *Journal of South China Agricultural University* 18, 25–30.
- Masters E. (2004) La ressource en karité: vue d'ensemble de la recherche et du développement en Afrique, pp. 13–31. In Actes de l'atelier international sur le traitement, la valorisation et le commerce du karité en Afrique, 4–6 mars 2002, FAO et CFC.
- Odebiyi J. A., Bada S. O., Omoloye A. A., Awodoyin R. O. and Oni P. I. (2004) Vertebrate and insect pests and hemi-parasitic plants of *Parkia biglobosa* and *Vitellaria paradoxa* in Nigeria. *Agroforestry Systems* 60, 51–59.
- Sallé G., Boussim J., Raynal-Roques A. and Brunck F. (1991) Le karité, une richesse potentielle: perspectives de recherche pour améliorer sa production. *Bois et Forêts des Tropiques* 228, 11–23.
- Sanou H., Kambou S., Teklehaimanot Z., Dembélé M., Yossi H., Sina S., Djingdia L. and Bouvet J.-M. (2004) Vegetative propagation of *Vitellaria paradoxa* by grafting. *Agroforestry Systems* 60, 93–99.
- Sone K., Tomimoto M., Tokuraku T., Matsuyama K., Hata K., Higuchi T. and Okabe T. (2007) Improved method of applying non-woven fabric strips inoculated with *Beauveria bassiana* conidia to control *Monochamus alternatus* (Coleoptera: Cerambycidae) adults. *Journal of the Japanese Forest Society* 89, 262–268.
- Taketsune A. (1983) Studies on the population dynamics of the pine sawyer, *Monochamus alternatus* Hope (Coleoptera: Cerambycidae) and its control by some pathogens. *Bulletin of the Hiroshima Prefectural Forest Experiment Station* 18, 39–62.